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ABSTRACT

In this paper, an explicit one step method is presented for numerical so-
lution of sti� systems of ordinary di�erential equations (ODEs). In this
method, the solution of the ODE is considered as a polynomial. The nu-
merical approximation is obtained by minimizing an error function that
is de�ned based on residual error. The stability region of the proposed
method is obtained. In contrast to Runge-Kutta (RK) method that use
Taylor polynomial, the method has larger stability region and a larger
stable step size can be selected to obtain the numerical solutions. Nu-
merical experiments show that the method is more accurate than explicit
and implicit methods such as implicit Runge-Kutta Methods (IRK) of
order eighth.

Keywords: Ordinary Di�erential Equations, Stability Region, Runge-
Kutta Method, Sti� System, Explicit Method.
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1. Introduction

Ordinary di�erential equations (ODE) appear in science and engineering
such as geometry, chemical reaction kinetics, mechanics, population dynamics,
electronic circuits, molecular dynamics, and many other areas of application
Shampine and Corless (2000), Tasi¢ and Mattheij (2004), Zeeshan and Majeed
(2016). The time dependent partial di�erential equations (PDEs) also can be
converted into a system of ODEs by spatial discretization. Numerical methods
for solving ODEs are classi�ed into boundary value problems (BVPs), and
initial value problems (IVPs). In an initial value problem all of the conditions
are speci�ed at the initial point. The conditions of a boundary value problem
are given in both initial and �nal points Ascher et al. (1995). We concentrate
here on the case of IVP. However, the proposed method can be used for BVP.

Numerical method forms an important part of solving ordinary di�eren-
tial equations, most especially in cases where there is no closed form solu-
tion Ascher and Petzold (1995), Zheng et al. (2011), Zhu and Petzold (1997).
There are numerous methods that produce numerical approximations to the
solution of ODEs such as Taylor series method, Euler's method, improved Eu-
ler's method, Runge-Kutta methods, multi-step methods and the extrapolation
method Brugnano and Magherini (2009), Liu (1999), Tasi¢ and Mattheij (2005),
Wang (2017).

The local truncation error of these methods depends on higher order deriva-
tives of the solution Barrio (2005), Barrio et al. (2005), Voss and Muir (1999),
Zhang (2002). In some di�erential equations, these derivatives can be abso-
lutely large in value which require that the step size should be taken extremely
small in order to achieve suitable accuracy. These types of equations are called
sti� di�erential equation. Many researches have been deal with the develop-
ment of accurate and stabile methods for solving ODEs Hairer and Wanner
(1999), Ibáñez et al. (2011), Ibrahim et al. (2007).

In previous work we introduce RCW method for solving ODEs problem
Rahmanzadeh et al. (2013). In this paper, we obtain the stability region of a
RCW method and advance it to obtain the numerical solution of sti� systems
of ordinary di�erential equations. In RCW method, the solution of ODE is
considered as a polynomial of degree n. Then an error function based on
residual error is de�ned. Finally the coe�cients of the polynomial are obtained
in such a way that the error becomes minimum. The coe�cients of the proposed
method are not �xed for all steps and in each step we need to minimize the
error and obtain the new coe�cients. In contrast to Runge-Kutta methods
that use the Taylor polynomial of degree n to solve ODEs, the RCW method
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has larger stability region. Also numerical experiments show that the method
is more accurate than explicit and implicit method such as IRK of order 8. The
method is applied for linear and nonlinear ODEs.

2. Theory

A system of �rst order initial-value problems has the form:

dy1
dt

= f1(t, y1, y2, ..., ym), (1)

dy2
dt

= f2(t, y1, y2, ..., ym),

...

dym
dt

= fm(t, y1, y2, ..., ym),

for t0 ≤ t ≤ tn, with the following initial conditions:

yi(t0) = yi,0; i = 1, · · · ,m. (2)

The object aim is to �nd m functions y1, y2, ..., ym that satisfy the di�eren-
tial equations together with all the initial conditions.

There are a number of well-known numerical methods for approximating
solutions of (1), such as the Runge-Kutta methods. In sti� ODEs the local
truncation error of these methods is large and an extremely small time step h
is needed to achieve suitable accuracy. Our goal is to introduce a method that
minimizes the error and obtain the result with a larger value of h. To this goal,
in the next section we extend the RCW method to solve (1).

Supposedly the initial solution at t = t0 is given and we need to obtain
the solution in the next time step t = t0 + h. In the �rst place, the numerical
solution is considered as a polynomial of degree n as follows:

yi(t) ' ȳi(t) =

n∑
j=0

ai,j(t− t0)j , i = 1, ...,m. (3)
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We need to obtain the coe�cient ai,j , i = 1, ...,m, j = 0, ..., n. The ai,0 and
ai,1 can be obtained using the initial conditions as follows:

ȳi(t0) = yi,0, (4)

ȳ
′

i(t0) = fi(t0, y1,0, y2,0, ..., yn,0). (5)

To �nd the other coe�cients replace y with ȳ in (1) and de�ne the residual
functions

Ri(t, ai,2, ai,3, ..., ai,n) =
dȳi
dt
− fi(t, ȳ1, ȳ2, ..., ȳm), (6)

then, the error function is introduced as follows:

e(a1,2, ..., a1,n, ..., am,2, ..., am,n) =

∫ t0+h

t0

m∑
i=1

[Ri(t, ai,2, ai,3, ..., ai,n)]
2
dt. (7)

In this paper, the Nelder-Mead simplex algorithm is used to �nd the coe�-
cients and obtain the approximation solution at t = t0 + h. The Nelder-Mead
algorithm or simplex search algorithm, originally published in 1965 (Nelder and
Mead, 1965), is one of the best known algorithms for multidimensional opti-
mization. The method does not require any derivative information and is quite
simple and very easy to use. In Matlab software the fminsearch command uses
the Nelder-Mead simplex algorithm. We use the fminsearch command in order
to minimize the functions e and to obtain the coe�cients ai,j . This procedure
is used to obtain the solution for next time steps.

3. Stability Analysis

In this section we obtain the stability region of the proposed method. Ab-
solute stability is based on a test equation

y′ = λy, y(x0) = y0, (8)

with the exact solution
y(t) = y0e

λt. (9)

The behavior of exact solution for Real(λ) < 0 is that | limt→∞ y(t)| = 0.
We want that the numerical solution has the same characteristics.

De�nition 3.1. The region of absolute stability of the ODE method is the
region in the complex plane R, such that if hλ ∈ R then the numerical solution
y(t)→ 0 as t→∞ for all initial values y0.
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The region of absolute stability is a property of the method and is useful
for estimating the timestep size required to obtain qualitatively correct solu-
tions. We obtain the stability region of the proposed method for n = 1, 2, 3, 4
and compare the results with the standard Runge-Kutta methods of orders 1
through 4.

To this goal, we apply the RCW method with n = 1, 2, 3, 4 to the model
problem (8), and obtain the resulting di�erence equations. For n = 3 we have

ȳ(t) = a0 + a1(t− tn) + a2(t− tn)2 + a3(t− tn)3. (10)

The a0 and a1 can be obtained using the conditions:

ȳ(tn) = yn → a0 = yn (11)

ȳ′(tn) = λyn → a1 = λyn. (12)

To �nd a2 and a3 we need to minimize the error as comes next

e(a2, a3) =

∫ tn+h

tn

[R(t, a2, a3)]2dt; (13)

where
R(t, a2, a3) = ȳ′ − λȳ. (14)

The minimum of the equation (13) is obtained by solving the following equa-
tions

∂e(a2, a3)

∂a1
= 0, (15)

∂e(a2, a3)

∂a2
= 0. (16)

We have

a2 = −
15
(
2h3λ5 − 17h2λ4 + 56hλ3 − 63λ2

)
2 (5h4λ4 − 60h3λ3 + 318h2λ2 − 840hλ+ 945)

yn, (17)

a3 =
7
(
3h2λ5 − 20hλ4 + 45λ3

)
2 (5h4λ4 − 60h3λ3 + 318h2λ2 − 840hλ+ 945)

yn. (18)
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Put λh = z and t = tn+1, we have

yn+1 = p3(z)yn, (19)

where

p3(z) =1 + z +
7
(
3z5 − 20z4 + 45z3

)
2 (5z4 − 60z3 + 318z2 − 840z + 945)

,

−
15
(
2z5 − 17z4 + 56z3 − 63z2

)
2 (5z4 − 60z3 + 318z2 − 840z + 945)

.
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Figure 1: Stability region of RCW method for n = 1 (top, left), n = 2 (top, right),n = 3 (bottom
left) and n = 4 (bottom, right).

Thus, the region of absolute stability for the RCW method with n = 3 is
de�ned by the region in the complex plane such that |p3(z)| ≤ 1. Figures 1
and 2 show the stability regions of RCW method for n = 1, 2, 3, 4 and the RK
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of orders 1 through 4, respectively. As Figures 3-4 show the RCW has larger
stability region and gives a more stable results than that of the RK for ODEs.
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Figure 2: Stability region of RK method of order 1 (top, left), order 2 (top, right), order 3 (bottom
left) and order 4 (bottom, right).

4. Numerical Examples

In this section, the proposed method is applied to obtain the numerical
solution of some linear and nonlinear test problems. In RCW method the
numerical solution is considered as a polynomial of degree n that is the best
polynomial approximation. Denote yRCW and yRK the approximation solution
that is obtained by RK4 and RCW method for n = 4, we have

|y − yRCW | ≤ |y − yRK4| ≤ Ch4. (20)

Thus, it is expected that the rate of convergence of RCW method is more
better than RK methods.
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Example 4.1. Consider the following systems of �rst-order di�erential equa-
tions Thohura and Rahman (2013).

y
′

1 = 9y1 + 24y2 − 5 cos(t)− 1

3
sin(t), y1(0) =

4

3
, (21)

y
′

2 = −24y1 − 51y2 − 9 cos(t)− 1

3
sin(t), y2(0) =

2

3
. (22)

We use the RK, IRK and RCW methods to approximate the solutions, and
compare the results to the exact solutions. The exact solution of this example
is

y1(t) = 2e−3t − e−39t +
1

3
cos(t), (23)

y2(t) = −e−3t + 2e−39t +
1

3
cos(t) (24)

Figure 3 shows the exact solution of this example that has rapid variation
in some part of the domain.

t
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Figure 3: The exact solutions y1 and y2 in Example 1.

In the �rst place, we approximate solution by a polynomial with degree
n = 6, as follows:

ȳi(t) =

i=6∑
j=0

ai,j(t− t0)j , i = 1, 2. (25)

336 Malaysian Journal of Mathematical Sciences



An Explicit Time-Stepping Method Based on Error Minimization for Solving Sti� System
of Ordinary Di�erential Equations

The coe�cients a1,0 and a2,0 are determined by using the initial conditions
in what follows:

ȳ1(t0) = a1,0 = y1,0 =
4

3
, ȳ2(t0) = a2,0 = y2,0 =

2

3
(26)

ȳ
′

1(t0) = a1,1 = 2e−3t0 − e−39t0 +
1

3
cos(t0), (27)

ȳ
′

2(t0) = a2,1 = −e−3t0 + 2e−39t0 +
1

3
cos(t0). (28)

In order to obtain other coe�cients, we substitute the approximate values
ȳi, i = 1, 2 to equations (21) and (22) and de�ne the residual errors as follows:

R1(t, a1,2, ..., a1,6) = ȳ
′

1 −
(

9ȳ1 + 24ȳ2 − 5 cos(t)− 1

3
sin(t)

)
, (29)

R2(t, a2,2, ..., a2,6) = ȳ
′

2 −
(
−24ȳ1 − 51ȳ2 − 9 cos(t)− 1

3
sin(t)

)
. (30)

The residual errors are used to de�ne an error function as follows:

e(a1,2, ..., a1,6, a2,2, ..., a2,6) =

∫ h=0.05

0

(
R2

1 +R2
2

)
dt, (31)

By minimizing equation (31) the coe�cient a1,2, ..., a1,6, a2,2, ..., a2,6 are ob-
tained. In order to obtain the solution at the next step we should replace t0
by t0 + h and repeat the procedure.

Table 1 show the coe�cient for four successive steps.

Table 1: The coe�cient ai,j for four successive steps in Example 1.

a0 a1 a2 a3 a4 a5 a6
y1(N = 1) 1.333333 33 -748.018 9460.765 -79146.8 399907 -905341
y2(N = 1) 0.666667 -75 1506.119 -18743.4 154160.7 -761231 1679820
y1(N = 2) 1.792971 -3.68861 -8.87429 187.5031 -1638.82 8399.098 -19159.1
y2(N = 2) -1.03196 0.676999 27.25628 -366.559 2899.694 -13307.2 26721.09
y1(N = 3) 1.42382 -3.34287 4.462877 -0.84469 -33.8231 214.048 -560.121
y2(N = 3) -0.87464 1.680586 -1.68556 -5.34721 64.17235 -338.161 781.1712
y1(N = 4) 1.131515 -2.53741 3.465085 -1.79122 -37.6392 380.4909 -1312.14
y2(N = 4) -0.72497 1.317462 -1.63775 0.523073 23.50436 -217.263 707.0921

Figure 4 shows the residual functions R1 and R2 versus time for h = 0.05.
The residual errors do not increase with time and this show the stability and
reliability of this method.
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Figure 4: The residual functions R1 and R2 versus time in Example 1.

Table 2 shows the numerical solutions of y1(x) and y2(x) obtained from the
RCW, RK and four stage implicit Runge-kutta methods methods. Also the
analytical solution and the di�erence between the exact value and the approxi-
mation value are given. Table 2 shows the RCW method is more accurate than
IRK and RK methods. Also, in the case of using RCW method, it is possible
to obtain the numerical solution with larger values of h. For example, neither
of the IRK and RK methods can obtain the numerical solution with h = 0.3.

Table 2: The numerical solutions of y1(x) and y2(x) in Example 1.

t=.05 y1(analytical) = 1.912058635 y2(analytical) = −0.909076587

ȳ1(t) ȳ2(t) error1 error2 method

1.912058241 -0.909076888 3.93E-07 3.01E-07 RCW (h = 0.05)
1.912056086 -0.909071488 2.55E-06 -5.10E-06 IRK (s = 4)(h = 0.05)
1.736416379 -0.557790252 1.76E-01 -0.3512863 RK

t=.1 y1(analytical) = 1.793062585 y2(analytical) = −1.032002453

1.792990795 -1.031971618 7.18E-05 -3.08E-05 RCW (h = 0.1)
1.792806927 -1.031491136 2.55658E-04 -5.113E-04 IRK (h = 0.1)
-2.645181254 7.844542146 4.44E+00 -8.8765446 Rk

t=.15 y1(analytical) = 1.601966763 y2(analytical) = −0.961458713

1.601164464 -0.961068144 8.023E-04 -3.906E-04 RCW (h = 0.15)
1.599648625 -0.956822437 2.318138E-03 -4.6363E-03 IRK (h = 0.15)

t=.2 y1(analytical) = 1.423902396 y2(analytical) = −0.874681025

1.420396706 -0.872963837 3.50569E-03 -1.7172E-03 RCW (h = 0.2)
5.17E+78 -1.03E+79 -5.17E+78 1.03E+79 IRK (h = 0.2)

t=.25 y1(analytical) = 1.267645618 y2(analytical) = −0.795220771

1.258154617 -0.790604594 9.491001E-03 -4.6162E-03 RCW (h = 0.25)

t=.3 y1(analytical) = 1.131576522 y2(analytical) = −0.724998568

1.112233204 -0.715665871 1.9343318E-02 -9.3327E-03 RCW (h = 0.3)

In order to show the stability of this method for larger value of time step,
this example is solved for h = 0.2 on [0, 2]. The RK and IRK methods cannot
obtain the solution for h = 0.2 on [0, 2]. Table 3 show the numerical solution for
di�erent values of t and h = 0.2 on [0, 2]. As table shows the error is reduced
with time.
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Table 3: The numerical solutions for di�erent values of t and h = .2 in Example 1.

t ȳ1(t) ȳ2(t) error1 error2
0.2 1.420396706 -0.872963837 3.50569E-03 -1.7172E-03
0.4 0.907470234 -0.607245059 1.938353E-03 -9.691E-04
0.6 0.604645846 -0.439878859 1.063802E-03 -5.319E-04
0.8 0.413087649 -0.322661609 5.83827E-04 -2.919E-04
1 0.279354494 -0.229727631 3.20411E-04 -1.602E-04
1.2 0.175257518 -0.148021718 1.75845E-04 -8.79E-05
1.4 8.6550362E-02 -7.1603038E-02 9.65E-05 -4.83E-05
1.6 6.673356E-03 1.529909E-03 5.30E-05 -2.65E-05
1.8 -6.6729937E-02 7.1231984E-02 2.91E-05 -1.45E-05
2 -0.13377406 0.136244836 1.60E-05 -7.98E-06

Example 4.2. Consider the following systems of �rst order di�erential equa-
tions

y
′

1 = y1 + 100y2 − sin(100t), y1(0) = 0, (32)

y
′

2 = −100y1 − 5y2 + 5 cos(100t), y2(0) = 1. (33)

The exact solution of this example is y1(t) = sin(100t), y2(t) = cos(100t).

Figure 5 shows the exact solution of this example. The function y1 and y2
in this example have rapid oscillations.
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Figure 5: The exact solutions y1 and y2 in Example 2.

We use the RCW and IRK methods to solve this example. In addition, we
approximate the solution using a polynomial of degree n = 6, as follows:

ȳi(t) =

j=6∑
j=0

ai,j(t− t0)j , i = 1, 2. (34)
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Like Example 1 the coe�cients a1,0 and a2,0 are determined by using the
initial conditions in what follows:

ȳ1(t0) = a1,0 = y1,0 = 0 , ȳ2(t0) = a2,0 = y2,0 = 1, (35)

ȳ
′

1(t0) = a1,1 = y1,0 + 100y2,0 − sin(100t0), (36)

ȳ
′

2(t0) = a2,1 = −100y1,0 − 5y2,0 + 5 cos(100t0). (37)

Substitute yi in (32) and (33) with ȳi in equations (34) and de�ne the
residual functions as follows:

R1(t, a1,2, ..., a1,6) = ȳ
′

1 − (ȳ1 + 100ȳ2 − sin(100t)) , (38)

R2(t, a2,2, ..., a2,6) = ȳ
′

2 − (−100ȳ1 − 5ȳ2 + 5 cos(100t)) . (39)

Then, the error function is:

e(a1,2, ..., a1,6, a2,2, ..., a2,6) =

∫ h=0.1

0

(
R2

1 +R2
2

)
dt. (40)

As previous example by minimizing the error in (40) the numerical solutions
are obtained. In this example the error1 and error2 are de�ned as:

errori = ȳi − yi, i = 1, 2. (41)

The graph of error1 and error2 are plotted in Figures (6) and (7) respectively.
The results show that the RCW method is more accurate.
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Figure 6: The graph of error1 for RCW and IRK method in Example 2.
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Figure 7: The graph of error2 for RCW and IRK method in Example 2.

Example 4.3. In order to show the stability of method in this example we
consider a nonlinear ODE as follows.

y
′

1 = 3
y1y2
t3

+ y21 − e6t, y1(1) = e3, (42)

y
′

2 = 3y
2
3
2 + ln(y1)− 3t, y2(1) = 1. (43)

The exact solution of this example is y1(t) = e3t, y2(t) = t3.

In this test, we use the RCW and IRK methods with h = 0.05. As we
have done in Examples 2 and 3 the approximate solution is considered as a
polynomial of degree n = 6. Table 4 shows the error for RCW method and
IRK method. Results show that the error of RCW is less than the error of
IRK.

Table 4: The numerical solutions for di�erent values of t and h = 0.05 in Example 3.

t error1 (RCW) error1 (IRK) error2 (RCW) error2 (IRK)

1.05 -3.908E-14 7.42E-09 -3.92E-13 7.69E-12
1.1 -1.3641E-10 1.27E-07 -4.45E-12 9.55E-11
1.15 -2.8038E-09 2.81E-06 2.21E-13 1.54E-09
1.20 -9.7509E-08 9.74E-05 -3.00E-11 3.90E-08
1.25 -5.9412E-06 5.76531E-03 -1.20E-09 1.69E-06
1.30 -6.7133E-04 0.60453166 2.61E-07 1.30825E-04

Example 4.4. Consider the following systems of �rst-order di�erential equa-
tions

y
′

1 = −1002y1 + 1000y22 , y1(0) = 1, (44)

y
′

2 = y1 − y2(1 + y2) , y2(0) = 1. (45)
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The exact solutions of this example are y1(t) = 2e−2t and y2(t) = −e−t.
We use the RCW method with n = 4 and RK4 method to approximate the
solutions. Table 5 show the numerical results and the RCW is more accurate
than the new method that is presented in Ascher et al. (1995), Chen et al.
(2015).

Table 5: The numerical solutions for di�erent values of t and h = 0.05 in Example 3.

h t error (RCW) error ( Chen et al. (2015)) error ( Guzel and Bayram (2005))

0.05 0.05 -3.28E-09 2.15E-8 8.2E-8
0.05 0.05 -1.63E-9 2.18E-8 2.58E-9
0.20 0.20 -3.35E-06 1.15E-5 7.995E-5
0.20 0.20 -1.86E-06 5.25E-6 2.58E-6

5. Conclusion

An explicit one step method was presented for solving sti� system of ordi-
nary di�erential equations. The stability region of the proposed method was
obtained. In contrast to the methods that use polynomials to approximate
numerical solution such as Runge-Kutta methods, the proposed method has
larger stability region and accordingly a larger stable step size can be selected
to obtain the numerical solutions. The method is applied for some test prob-
lems. Numerical experiments show that the method is more accurate than
explicit and implicit methods such as implicit Runge-Kutta methods.
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